If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-1000x+2100=0
a = 1; b = -1000; c = +2100;
Δ = b2-4ac
Δ = -10002-4·1·2100
Δ = 991600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{991600}=\sqrt{400*2479}=\sqrt{400}*\sqrt{2479}=20\sqrt{2479}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1000)-20\sqrt{2479}}{2*1}=\frac{1000-20\sqrt{2479}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1000)+20\sqrt{2479}}{2*1}=\frac{1000+20\sqrt{2479}}{2} $
| -196=-3n-7(4n-3) | | -18-11e=26 | | 3-8n=-4n+6-5n | | c+10=59-6c | | x-2x(12-12)=2(4-2x)+2/ | | 3d-8=7 | | -120=-3(4+6n) | | 40=29+c | | -2a-9=6a+157 | | A+7=7+7a | | 3-2(b−2)=2−7b | | -3m-4-9.3m=8.8 | | (7t-2)-(-3t+1)=-3(1-3) | | 42+(6x)=180 | | -120=-3(44+6n) | | 4(7n+6)=12(-11n+2) | | 10=29+c*4 | | 9k+6=8k+137 | | 9e-7=7e- | | 4(-c-24)=-4c-24 | | r÷5=8 | | 10=29+c/4 | | 1/2y-6=11 | | -1-5(1-5x)=144 | | 2÷3c-7=1 | | 8z+6=7z+4-2 | | 61+2x=x | | -5(4b+7)=-155 | | 2.3x+4=x+36 | | -11(3x-4)-3x=8x-12(3x+11) | | 4(n-1)=6n+12 | | 5/9-7x/12=1/6-x/8 |